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VARIATIONAL PRINCIPLES FOR NON-LINEAR ELASTOSTATICS 

IN EULERIAN COORDINATES* 

L.M. ZUBOV 

A stationarity principle is formulated for static problems in non-linear 
elasticity theory with the body boundary specified for the deformed 
state. Assuming material homogeneity, potential energy and 
complementary energy functionals are constructed for specified boundary 
conditions, together with Khu-Washizu and Tonti type functionals. The 
Hamilton-Ostrogradskii principle for dynamical problems in non-linear 
elasticity theory in Euler coordinates is considered in /l, 2/. 

1. The system of equilibrium equations for a non-linearly elastic body has the form /3/ 

div D + p,b = 0 

D = aW,/X, C = grad R, R = X,i, 

grad = i,a/&, div D = i,.aD/as, 

(1.1) 

(1.2) 

Here the tb are Cartesian coordinates of points of the body in the undeformed (reference) 
configuration, i.e. Lagrangian coordinates, i, are unit coordinate vectors, grad and div are 
gradient and divergence operators in the reference configuration, X, are Cartesian coordi- 
nates of points of the body in the deformed state, i.e. Eulerian coordinates, ,,C is the 
position gradient, D is the Piola stress tensor, R is the radius-vector of the point of the 
body in the deformed configuration, p0 is the material density in the reference configuration, 
b is the external mass loading and W, is the specific potential energy of the strain per 
unit volume of the undeformed body. 

System (1.1) , (1.2) easily reduces to a system of equations for unknown Xr with 
independent variables. 5,. This assumes that the region occupied by the elastic body in the 
reference configuration is known. Boundary conditions are formulated for a boundingsurface 
u whose equation is given in Lagrangian coordinates 5,. This elastostatic boundary-value 
problem in Lagrangian coordinates has a range of variational formulations derived in /4, 5/. 

One could have a situation where the boundary of the elastic body C is specified in its 
deformed configuration, and the problem consists of finding the stress-strain state of the 
body for the given boundary conditions. In this case one should takethe independent variables 
to be the Eulerian coordinates X, and the unknown quantities to be the Lagrangian coordinates 
xx. 

In Eulerian coordinates the equilibrium equations may be written using the symmetric 
Cauchy stress tensor T/3/ 

DivT+pb=O, DivT =i,,a'TJaXli 
(1.3) 

where p is the material density in the deformed configuration and Div is the divergence 
operator in Eulerian coordinates. 

Using the relation between the Cauchy and Piola tensors /3/ 

D = (det C) CT .T, CT z (C-l)r = (CT)-1 (1.4) 
together with the formulae 

d (det F)/ aF = (det F) PT 

aw/ac =- --FT. (aw/aF).FT 

(1.5) 

we obtain from (1.2) the defining relation for the Cauchy stress tensor: 

T = WE - (aW/BF).FT 

F = C-l = Grad r = ikar./aXkr r = x,i, 

W = (det F) W, = W(F) 
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Here F is the inverse position gradient, r is the radius-vector of the particle in the 
reference configuration, Grad is the gradient operator in Eulerian variables, W is the strain 
potential energy per unit volume of the deformed body and E is the unit tensor. 

For a homogeneous body the specific energy W depends on the coordinates Xr only through 
the tensor F(X,J, i.e. W does not explicitly depend on Xr. Taking this into account we find 
an expression for DivT with the help of (1.5): 

i,aa [WE - (BW/IYF)+F~I /3X, = 

(BW/Mm,) (BF,,IaX,) i, - F,,d (aW/BF,,)/ aX,h - 
(aW/aF,,) (aF&aX,) i,, F,, = i,.F.i, 

(1.6) 

Because F,, =y &c,,jOX,, we have aF,,laxk = aFknlaxs, fk0m whm 

(aw/aF,,,,) (aFdax,) i, = (aw/aF,d (@idaX,) ix 

In accordance with (1.6) and (1.7) the equilibrium Eqs.Cl.2) take the form 

(1.7) 

DivK--pb*F-r=O 

K = aw/aF 
(1.8) 

(1.9) 

When there are no body forces the equilibrium Eqs.il.8) and the governing Eqs.tl.9) are 
completely identical to Eqs.tl.1) and relations (1.2) except tht the reference and deformed 
configurations have swapped roles. Thus the non-symmetric tensor K can be considered to be 
an analogue of the Piola stress tensor for Eulerian coordinates. 

This analogy does not extend to force boundary conditions , which have two equivalent 
forms in the notation of /3/z 

n.D=f,,, N.T=f (l.lO) 

Here n and N are unit normal vectors in the reference and deformed frames respectively, 
f, is the load acrass unit area of the surface a, and f is the load crossing unit area of 6. 
Eqs.(l.Sf and (1.9) give the relation 

K =(WE--T).F-* (1.31) 

which we use with (1.10) to obtain a formulation of the force boundary conditions in terms of 
the tensor K 

N.K=(WN-f).F-r (l.12) 

2. We assume that we know the boundary C of the elastic body in its deformed state and 
that it consists of three parts: I: = X, u X, U 2,. On C, the displacement vector is 
specified, which is equivalent to specifying the vector r giving the position of the surface 
particle in the reference configuration. The external load is specified on Z,, i.e. (1.12) 
is satisfied. Points on the surface Z, can slide smoothly along a specified solid surface 
without losing contact with it. The last condition reduces to the following restriction on 
variations 6r on Z, : 

n.&r -0 @**I 

Using the transformation formula for an oriented surface element under strain, 

ndo=(detF)F-l.NdZ 

restriction (2.1) can be rewritten in the form 

N.F-T.6r=0 

The zero-friction condition on the surface Z,, 
(2.2) 

N.T.G=O, G=E-NN 

is, according to (l.ll), equivalent to the requirement 

N.K.FT.G=O (2.3) 

We shall show that the equilibrium Eq.tl.8) and the boundary conditions (1.12) on 8, 
and (2.3) on C, follow from the variational equation 

6f WdV =-1 pb.F-=.SrdV + i (WN-f).F-T.brdX 
V Y & 

(2.4) 

The variations 6r in (2.4) must satisfy the requirement Sr = 0 on X, and condition 
f2.2) on Z,. From (1.9) we have 
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6s WddB=Str(K.6FT)dV=SN.K.6rdl:-s (DivK).ijrdV= (2.5) 
v 

v %L 

" 

N.K.&dZ-i(DivK).GrdV 

Using (2.51, the restriction (2.2) on Z,, and also the equalities 

N.K.6r=N.K.FT.G.F-2’.6r+N.K.FT.NN.F-T.& 

G.G = G 

we transform the variational Eq.(2.4) to the form 

S(DivK-~b.F-T).6rdV-~(N.K.FT.G).(G.F-T.6r)d~- 

s [N.K-(W:-f).F-T].&dZ=O 
B. 

(2.6) 

Since the vector G.F-T.Gr on Z, can take arbitrary values in the plane tangent to X,, 
while in V and on X, the variations 6r are arbitrary, the equilibrium Eqs.tl.8) and 
boundary conditions (1.12) and (2.3) follow from (2.6). 

The expression on the right-hand side of (2.4) cannot, in general, be represented as 
the variation of some functional. Hence the variational Eq.(2.4) is not in general a vari- 
ational principle, because it does not reduce to a stationarity condition for a functional. 
Furthermore, it is clear that even in the simplest case b=const the volume integral on the 
right of (2.4) will not be variational of a functional, while even when there is no boundary 
loading (f = 0) the surface integral also fails to reduce to the variation of some functional. 

In particular, it follows from this that even if one ignores body forces, the boundary- 
value problem of non-linear elastostatics in Eulerian coordinates with a free boundary com- 
ponent does not have a variational formulation, i.e. the problem is not equivalent to the 
stationarity of a functional. 

Below we shall assume that there are no body forces and that the boundary C does not 
contain a component X, with a specified load. In that case the variational Eq.(2.4) turns 
into a variational principle, for the stationarity of the potential energy 

6n[r]=O, II=! WdV 
v 

Relations (1.8) and (1.9) enable us to construct a Khu-Washizu type principle for the 
problem of non-linear elastostatics in Eulerian coordinates. In this principle the functions 
r, F and K are varied independently, while the functional has the form 

n,[r,F,K]=S[W(F)-_tr(KT.(F-Gradr))]dV-_N.K.(r-rr*)dX 
Y z, 

(2.7) 

Here r* is the boundary value of the position vector in the reference configuration, 
specified on X,. The main (stable) boundary condition for the functional (2.7) is the geo- 
metrical contact condition imposed on the vector r at X,, reducing to restriction (2.2). The 
equilibrium Eqs.tl.8) with b =0 serve as the Euler equations for the variational problem 
?%I, =o, determining relations (1.9) and the geometric relation F = Gradr. The boundary 
condition r = r* on 8, and the zero friction condition (2.3) on 2, fall out of the vari- 
ational principle IUI, = 0, i.e. are nutural boundary conditions for the functional HI,. 

3. The system of equations for an elastic body in Eulerian coordinates can be transformed 
to a form not containing-the function r(X,) - as an unknown. Elimination 
leads to the following consistency condition: 

RotF = 0, Rot F = i, x BF/BXk 

When (3.1) is satisfied the vector field r(X,) can be determined by 
terms of the tensor field F(X,). 

If there are no body forces the equilibrium Eq.11.8) can be satisfied 
tensor of stress functions CLI 

of this function 

(3.1) 

quadratures in 

by means of a 
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K =Rot@ (3.2) 
If with the help of the governing relations (1.9) we express the inverse position 

gradient F in terms of the stress tensor K and use (3.2), then the system of equations in 
Eulerian coordinates, describing the equilibrium of an elastic body, will consist of nine 
scalar consistency conditions (3.1) and contain the components of the tensor cp as unknowns. 

As in the elastostatic problem in Lagrangian coordinates /4/, a system of equilibrium 
equations without displacements can be obtained from a Castigliano-type principle, for the 
formulation of which we introduce a complementary energy U - a function of the stress tensors 
K, connected with the strain potential energy W by the Legendre transformation 

U = tr(K.FT) - W, F = aU/aK (3.3) 

It should be understood that here the complementary energy U is not the same as the 
complementary energy considered in /4/. 

To construct the function U(K) it is necessary to express the inverse position 
gradient F in terms of the stress tensor K. We will consider this problem for the case of 
an isotropic material in which the strain potential energy W is a function of the invariants 
of a symmetric and positive-definite tensor H = A.FT, where A is the orthogonal tensor 
associated with the strain /3/. The deformation measure H is associated with the Cauchy- 
Green finite strain tensor B /3/ by the relation 

I-12 = (E + 2e)-l 

It follows from (1.9) that in an isotropic material the tensor A.K is symmetric and 
an isotropic function of the deformation measure H: 

A.K=cp(H) (3.4) 

Inverting (3.4) we obtain H =$(A.K). 
For example, for a material with a potential energy function 

we have 

W = 1/,htr2 (H - E) + p tr (II - E)2, h, p = const, 

A.K = [h (trH - 3) - 2~1 E + 2pH 

H-E=(Zp)-'[A.K-+$r(A.K)Ej, 
I 

Y=m 

Because F = AT.H, the problem of constructing the relation F(K) reduces to 
expressing the orthogonal tensor A in terms of the tensor K: 

F(K)=AT(K).$[A(K).K] 

The expression A(K) is determined by solving the equation 
A.K = KT.AT 

expressing the symmetry of the tensor A.K. 

(3.5) 

Eq.(3.5) is identical to an equation in /6/ which governs the dependence of the rotation 
tensor A on the Piola stress tensor. As was established in /6/, the solution of Eq.(3.5) is 
not unique and in general has four branches. Just as in /6/ it can be shown that only one of 
these branches corresponds to an angle of rotation for material line-elements that does not 
exceed 90". Rejection of the remaining branches is accomplished by means of the inequality 
trA> 1. Thus, if the rotation of material line-elements under the strain is not excessive, 
the representation of the inverse position gradient F in terms of the stress tensor K will 
be single-valued. 

With the help of (3.2) we can express the complementary energy U(K) in terms of the 
tensor stress function and consider the following Castigliano type functional: 

II,[Cn]=S U(Rot@) dV-5 tr[N xQ,.(Vr*)T]dx 
Y I: 

V=G.Grad 

Here Z = Z,, while V denotes the two-dimensional gradient operator on the surface 
/7/. The variation of the functional (3.6) has the form 

HI,=s tr(G@=.RotF)dV +S'tr[(N x &D).(G.F--Yr*)=]dZ 
v z 

(3.7) 
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Expression (3.7) shows that demanding the stationarity of the functional n, is equiv- 
alent to the consistency Eqs.(3.1) and the boundary conditions 

G.F = 'Cr* (3.8) 
If the surface E is simply connected, then condition (3.8) is equivalent to the conditions 

T = r*. Indeed, differentiating the latter, we obtain (3.81, while integrating (3.8) we 
find r = r* + d, where d is an arbitrary constant vector. Because the imposition of a 
txanslation does not alter the stress-strain state of the body, conditions (3.8) are equivalent 
to specifying displacements at the boundary of the domain. 

For an isotropic homogeneous material one can formulate a weak complementary energy 
principle similar to the variational principle suggested in 18, 9/. In this case, along with 
the possible static stresses the orthogonal tensor field A is independently varied, and the 
following expression is used for the complementary energy: 

u(P)=tr(P.H)-W, P=l/,(A.K+K*.A')=SW~aH (3.9) 

From (3.9) we obtain 

6U=tr(H.6P)=tr(FT.~K)-t_tr(K.FT.A'.6.~) (3.10) 

In Eulerian coordinates the functional for the weak complementary energy principle has 
the form 

II,[~D,A]=S u(~ot@,A)cl~--Str [(Nx (P).(Tr*)TjdZ 
v 2 

(3.11) 

By virtue of (3.10) and the properties of the antisymmetric tensor Ar.&A the stationarity 
conditions for functionals (3.11) consist of stationarity conditions for the functional II, 
and the equations K.Fr = FeKT, which together with (1.11) express the symmetry property of 
the Cauchy stress tensor T. 

In conclusion we give an expression for the functional of a Tonti type variational 
principle 

The stationarity conditions for the functional IX, are the equations 

Rot@ = 3W/BF, RotF = 0 

and boundary conditions (3.8) on B. 
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